Transitions from near-surface to interior redox upon lithiation in conversion electrode materials.

نویسندگان

  • Kai He
  • Huolin L Xin
  • Kejie Zhao
  • Xiqian Yu
  • Dennis Nordlund
  • Tsu-Chien Weng
  • Jing Li
  • Yi Jiang
  • Christopher A Cadigan
  • Ryan M Richards
  • Marca M Doeff
  • Xiao-Qing Yang
  • Eric A Stach
  • Ju Li
  • Feng Lin
  • Dong Su
چکیده

Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni(2+) → Ni(0)) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a "shrinking-core" mode). However, the interior capacity for Ni(2+) → Ni(0) can be accessed efficiently following the nucleation of lithiation "fingers" that propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss and provides guidance for the further design of battery materials that favors high C-rate charging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection

High-energy conversion electrodes undergo successive Li insertion and conversion during lithiation. A primary scientific obstacle to harnessing the potentially high lithium storage capabilities of conversion electrode materials has been the formation of insulating new phases throughout the conversion reactions. These new phases are chemically stable, and electrochemically irreversible if formed...

متن کامل

Lithium Insertion Mechanism in Iron-Based Oxyfluorides with Anionic Vacancies Probed by PDF Analysis

The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal-tungsten-bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-siz...

متن کامل

Covalent Modification of Glassy Carbon Electrode with an Imidazolium based Methoxysilyl Ionic Liquid Nanoparticles: Application in Determination of Redox System

Glassy carbon (GC) is the most commonly used carbon-based electrode in the analytical laboratory. Because of the high background current and low electrode response, modification of this electrode can be done by various materials and techniques. An ionic liquid (IL), 1-methyl-3-(3-trimethoxysilyl propyl) imidazoliumbis (trifluoromethylsulfonyl) imide, was covalently cross linked onto the GC surf...

متن کامل

Characterization Study for Nanocompositions of Methylene Blue and Riboflavin-Nafion on the Electrode Surface

     Nafion is a perfluorinated anionic polyelectrolyte. The increasing popularity of nafion for the fabrication of redox polymer modified electrodes in recent years arises from easy fabrication, good electrical conductivity and high partition coefficients of many redox compounds in nafion. To investigate the production of nano-compositions by mixing electron transfer material and nafion polyme...

متن کامل

Lithiation-induced shuffling of atomic stacks.

In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2015